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1. Introduction

By now, the gauge theory/gravity correspondence needs little in the way of motivation.

Indeed, since its concrete realization in Maldacena’s AdS/CFT conjecture [1] nearly a

decade ago, this remarkable duality has revolutionized the ways in which we think both

about quantum field theories and their gravity duals. From an understanding of the emer-

gence of the entropy of a black hole from its constituent microstates [2], to the emergence

of spacetime itself [3], the power of the correspondence is surpassed only by its stubborn

resistance to direct proof. To date though, not only has the conjecture sucessfully with-

stood an enormous barrage of tests and checks, it has also emerged as one of the most

promising approaches to understanding the strongly coupled behaviour of non-Abelian

gauge theories. Indeed, the eventual goal of this program is nothing less than a weakly

coupled gravitational dual to strongly coupled QCD, one that will be able to shed light on

the non-perturbative structure of strong interactions (see, for example, [4] and references

therein).

Fuelled largely by the discovery of D−brane degrees of freedom in string theory [5],

development on the gravity side has been equally impressive. Among this class of extended

objects, the giant gravitons of the AdS5×S5 solution of type IIB supergravity [6, 7] furnish

a particularly rich background in which to study non-perturbative effects in the string

theory [8]. As BPS objects blown up on an S3 contained in either the AdS5 or 5−sphere
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parts of the geometry, computations associated to these giant gravitons are protected

by powerful non-renormalization theorems and can be extrapolated from weak to strong

coupling. Moreover, while giants carry all the same quantum numbers as their energetically

degenerate point counterparts, as expanded states in the theory, their interactions are

much softer. These interactions however, are difficult to calculate in the supergravity

theory. Fortunately, the operators corresponding to giant gravitons have been identified

and studied in some detail in the dual N = 4 super Yang-Mills theory with gauge groups

U(N) [10] and SU(N) [11]. In the U(N) gauge theory at least, these giant operators are

Schur polynomials of the form1

χR (X) =
1

n!

∑

σ∈Sn

χR(σ) tr (σX) ,

constructed from the Higgs fields of the SYM multiplet and characterised by Young dia-

grams of the representation R of U(N). Consequently, the dynamics of the giant graviton

is encoded in the Feynman diagrams of the gauge theory via the multi-point correlators of

these Schur operators. The study of these operators and the realisation that these states

afford a description in terms of free fermions of a single matrix model (see the first ref.

of [10] and [12]) has led to a remarkable surge of activity focussed on extracting information

about the supergravity background from the gauge theory (see [13] and references thereof)

culminating in a complete classification of all the classical half-BPS solutions of the type

IIB supergravity [14]. This said though, most of what is known about giant gravitons and

their dual operators is known in the highly supersymmetric setting of the AdS5×S5/N = 4

SYM duality. If we are to believe that the duality is an exact one eventually leading to a

gravity dual of full 4-dimensional QCD then it is crucial that we understand and extend

the gauge/gravity dictionary to less supersymmetric backgrounds.2

A significant step toward a systematic study of less supersymmetric systems was taken

by Leigh and Strassler [15] in their construction of a three parameter family of N = 1 SYM

gauge theories obtained by an exactly marginal deformation of the N = 4 superpotential.

Then, by exploiting the fact that, at least for a one parameter subset, this Leigh-Strassler

deformation may be rewritten as a Moyal-like deformation,3

Φi ∗ Φj = eiπγ(Q1
i Q2

j−Q2
i Q1

j )ΦiΦj,

Lunin and Maldacena showed that the dual supergravity solution [30] could be constructed

from the type IIB AdS5 × S5 by a suitable single-parameter deformation of the 5-sphere.

This realization has stimulated an enormous resurgence of interest in string theory on this

deformed background including, but not limited to, extensions of the Lunin-Maldacena de-

formation to the eleven dimensional geometries of the Einstein-Sasaki form AdS5×Y p,q [17],

1For the special case of giants blown up on the S3
⊂ S5, these Schur polynomials reduce to the more

familiar subdeterminant operators identified in the second of refs [10].
2Ideally, we would like to be able to extend it further to non-conformal theories as well but we will adopt

the time-honored tradition of learning to walk before trying to fly.
3For a recent extension of this star product to capture a more general form of the Leigh Strassler

deformation see [16]
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deformations of N = 1 and N = 2 theories [18] and a number of studies of semiclassical

strings in this background [19] . A particularly insightful contribution to this set of ideas

came in [20] where it was shown that the Lunin-Maldacena geometry can equivalently be

reached by a sequence of T-dualities and shifts of the angular coordinates by the defor-

mation parameter γ - so-called TsT transformations. If, on the other hand, the different

angular directions are shifted by different parameter values, say γi, the resulting super-

gravity background is a completely non-supersymmetric deformation4 of AdS5 ×S5 whose

gauge theory dual can by systematically constructed from an appropriate generalization

of the Leigh-Strassler deformation [21]. Remarkably, this multi-parameter deformation is,

in some ways, simpler than the single-parameter Lunin-Maldacena deformation. This is

particularly true of the study of giant gravitons on these geometries. Generally very dif-

ficult to construct, it was rather astutely observed in [22] that many of the computations

simplify significantly when the deformation in the direction of motion of the D3−brane

decouples (γ̂1 = 0). Unlike the undeformed geometries previously explored, these giant

gravitons were found to no longer be energetically degenerate with the point graviton and

consequently unstable, a conclusion supported in the spectrum of small fluctuations about

the giant. Curiously though, even in the light of this instability, there seemed to be perfect

quantitative agreement between the gauge theory and semiclassical open string dynamics.

In this article, we revisit the construction of giant graviton solutions in the single-

parameter Lunin-Maldacena background. With the deformation coupling to the direction

of motion of the D−brane, a direct construction of the giant graviton solution in the super-

gravity proves to be very difficult problem and, until recently, had remained an unsolved

problem. There is, however, a limit - the Penrose limit - in which the analysis simplifies sig-

nificantly [23]. This in itself is hardly surprising; afterall the lightcone gauge string action

is already known to drastically simplify in this background, enough that the pertubative

string spectrum is exactly solvable [24]. The Penrose limit of a given geometry is obtained

by focussing on a null geodesic in the background. The limiting geometry is the so-called

pp-wave . For AdS5 × S5, the Penrose limit comes from focussing on a great circle of the

S5 and then boosting to the infinite momentum frame along this geodesic. There are, of

course, an infinite number of limits that can be taken, one for each great circle. However,

since any great circle may be rotated into any other by the SO(6) isometry of the 5-sphere,

there is essentially only one resulting pp-wave. On the other hand, the Penrose limit of the

deformed background is not unique. There are, in fact, two different limits that result in

BPS backgrounds. One of these is the usual pp-wave background in magnetic coordinates

and the other, a homogeneous pp-wave [31, 35, 36]. We would like to determine whether

these backgrounds support giant graviton solutions.

Toward this end, the next section of this article is devoted to a summary of the con-

stuction of giant gravitons on the maximally supersymmetric type IIB pp-wave. We pay

particular attention to the different null geodesics about which the Penrose limit can be

taken and how they are related. Thereafter, in the interests of self-containment, we dis-

4The superconformal Lunin-Maldacena deformation then, is a special case in which all three tori are

deformed by the same amount, γ̂1 = γ̂2 = γ̂3 = γ̂
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cuss the Lunin-Maldacena marginal deformation of AdS5 × S5 and the two Penrose limits

that result in BPS geometries. In section 4. we show that, indeed both of these deformed

pp-waves support giant gravitons exhibiting a remarkably rich structure. In section 5, we

initiate an exploration of some of this structure in the spectrum of small fluctuations about

the giant graviton equilibrium configuration and conclude, finally, with some comments on

the dual gauge theory operators and speculation on future directions.

Soon after this article appeared on the arXiv, we were made aware of [39] which has

some overlap with our work and resolves the apparent puzzle in [22]. In the former, giant

graviton configurations were investigated in the non-supersymmetric 3-parameter Frolov-

Roiban-Tseytlin geometry and through a detailed study of the fluctuation spectra of giants

blown up in both the sphere and AdS directions, it was shown that giant gravitons with

angular momenta along one of the equitorial directions - what we call (J, 0, 0), (0, J, 0) and

(0, 0, J) configurations - are stable and independent of the deformation. This is in excellent

agreement with our findings in section 4. and we return to this point there.

2. Giant gravitons, pp-waves and orbits of S5.

In the context of AdS5 × S5 giant gravitons are, by now, well known to be a KK- mode

blown up along a transverse S3 contained in the 5−sphere5 part of the geometry. This

blowing up is a consequence of the motion of the graviton along some geodesic - a great

circle - of the S5 through which a 5−form flux is threaded. On the other hand, the pp-

wave background is obtained from the AdS geometry by focussing in on a particular null

geodesic, ostensibly by asking what geometry a particle boosted to the infinite momentum

frame along the geodesic “sees”. It makes sense then, to ask if the giants found on the

AdS5 ×S5 background survive the Penrose limit. As far as we are aware, this question was

first posed and answered in the affirmative in [25]. There, the authors found that giant

gravitons in the maximally supersymmetric type IIB pp-wave divide into two types [26]

depending on the geodesic along which the Penrose limit is taken. If the orbit of the

graviton coincides with the geodesic along which the Penrose limit is taken the resulting

giant graviton is a spherical D3−brane whose worldvolume extends along x+ and the

spatial directions of an S3 contained in the 5−sphere. These D−branes couple directly to

the RR-field and, while they don’t permit an exact worldsheet description, they do afford

an alternate description in terms of mutiple D−strings whose moduli are argued to be

the fluctuations of the giant graviton [9]. If, however, the Penrose limit is taken along a

geodesic different to the one that the D3 is moving along, the resulting configuration has

Neumann boundary conditions in the x+ and x− directions as well as two spatial directions

(which could be in either the 5−sphere or the AdS part of the geometry). A full light-cone

gauge worldsheet analysis of these D−branes reveal that they preserve 16 supersymmetries

but only if they are rotating in some transverse two-plane in the pp-wave background. As

facinating as these latter solutions are, we find the structure of the former (giant graviton)

solutions on the deformed pp-wave rich enough on its own that, at least for the purposes

5Or, in the case of “dual giants”, the AdS5
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of this note, we will restrict our attention to them alone. A study of the second class of

D−branes in the Lunin-Maldacena deformed background remains an open problem.

More detailed studies of these configurations, their supersymmetries, fluctuations and

responses to certain non-vanishing B−fields may be found in refs. [28, 29]. In order to

facilitate comparison with our later results, we now, very briefly but systematically review

the construction of giant graviton solutions in the maximally supersymmetric type IIB

pp-wave background. The construction works equally well when the Penrose limit is taken

about (J, 0, 0), (0, J, 0), (0, 0, J) or (J, J, J) geodesics. In particular, we show how the two

sets of solutions are related by a light-cone-time-dependent rotation of coordinates (or,

in the jargon of general relativists, a coordinate transformation between Brinkmann and

Rosen coordinates). In the undeformed pp-wave background this transformation is more-

or-less trivial, reflecting the fact that the Penrose limit is essentially unique - any orbit on

the 5−sphere may be rotated into any other via the SO(6) isometry group. This, we will

find, is no longer the case for the pp-waves obtained from the deformed Lunin-Maldacena

background.

The maximally supersymmetric type IIB pp-wave6

ds2 = −2dx+dx− −
(

4∑

i=1

(xi)2 +

8∑

a=5

(xa)2

)
(dx+)2 +

4∑

i=1

(dxi)2 +

8∑

a=4

(dxa)2, (2.1)

obtains from the 10−dimensional AdS5 × S5 geometry with metric (written in global co-

ordinates)

ds2 = R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 + cos2 αdφ2
1 + dα2 + sin2 α dΩ̃2

3

)
,

by rescaling7

x+ =
1

2
(t + φ1) , x− = R2(t − φ1) , ρ =

r

R
, α =

y

R
, (2.2)

and sending R → ∞. Additionally, the only components of the 5−form flux F(5) that

survives the limit are those with a plus index,

F+1234 = F+5768 = const. , (2.3)

with the constant fully determined once a normalisation of F(5) is specified. Physically,

this is the geometry near the trajectory - the (J, 0, 0) orbit - of a particle moving with large

angular momentum along the φ1 direction and sitting at ρ = α = 0. When this particle

is a D3−brane, its action, in lightcone gauge and with a spherical ansatz for the brane

worldvolume, can be written

S = −T3λ

gs

∫
dτdθdφ2dφ3

[
r3

√
2λν + λ2 − λr4

]
, (2.4)

6In this and what follows, we have absorbed the usual mass parameter in the pp-wave into the definition

of x−

7Here, r2 =
P

i
(xi)2 and y2 =

P

a
(xa)2.
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where λ and ν are defined through X+ = λτ and X− = ντ respectively. The corresponding

Hamiltonian, as a function of the radius of the D3 worldvolume, is minimized at r = 0,

the point graviton, and r =
√

p+gs/2π2T3, the giant graviton.

In the above discussion, the S5 part of the geometry is parameterized by the five angles

(α, θ, φ1, φ2, φ3) in terms of which the 3−sphere metric is explicitly written as

dΩ̃2
3 = dθ2 + cos2 θ dφ2

2 + sin2 θ dφ2
3 .

There are clearly three U(1) isometries related to translations along each of φ1, φ2 and φ3.

A general orbit in this background is a linear superposition of these three isometries. A

particle moving on the (J, J, J) orbit then, has equal angular momentum in each of these

directions. To take a Penrose limit along a null geodesic associated to this orbit, we define

the new angular variable ψ = (φ1 + φ2 + φ3)/3 with periodicity 2π. The geodesic we will

focus on is given by

t = ψ, ρ = 0, α = α0, θ =
π

4
, ψ = φ1 = φ2 = φ3 . (2.5)

The geometry in the neighbourhood of this geodesic is recovered by defining lightcone

coordinates as

x+ =
1

2
(t + ψ) , x− = R2(t − ψ), (2.6)

rescaling appropriate coordinates as

ρ =
r

R
, α = α0 +

y1

R
, θ =

π

4
+

√
3

2

y2

R
, φ1 = ψ −

√
2
y3

R
,

φ2 = ψ +
y3 −

√
3y4

√
2R

, φ3 = ψ +
y3 +

√
3y4

√
2R

, (2.7)

and taking R → ∞. The result is, of course, a pp-wave, this time with metric8

ds2 = −2dx+dx− − ỹ2(dx+)2 + 4
(
y1 dy3 + y2 dy4

)
dx+ + dỹ2 + dr̃2

+ỹ2 dΩ2
3 + r̃2 dΩ̃2

3. (2.8)

The non-vanishing components of the 5−form in this background remains the same as in

eq. (2.3). String theory on this background was previously studied in [31, 32] where the

similarity between this metric and that of the motion of a particle in a magnetic field

earned it the moniker of “magnetic pp-wave”. As expected, all 32 of the supersymmetries

of AdS5×S5 survive the Penrose limit and, since the large J limit of the dual gauge theory

is independent of the choice of U(1) R-charge group, the gauge dual of this background is

the same truncation of N = 4 SYM as in [24].

Even though the two backgrounds in eqs. (2.1) and (2.8) seem very different, they

are essentially the same, just written in different coordinates. This is not unexpected since

8Now, r̃2 =
P

i
(yi)2 and ỹ2 =

P

a
(ya)2 and, incidentally, we have absorbed the “mass” parameter µ

into the definition of the lightcone variables.
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this magnetic pp-wave is just the geometry near one particular great circle (the (J, J, J)

orbit) and any such great circle can be rotated into any other under the action of the SO(6)

isometry of the S5. This rotation may be made more explicit first by making the change

of variables

x+ → x+,

x− → x− + y1y3 + y2y4,

followed by the lightcone time-dependent coordinate rotation



z1

z2

z3

z4


 =




cos x+ 0 − sin x+ 0

0 cos x+ 0 − sinx+

sin x+ 0 cos x+ 0

0 sin x+ 0 cos x+







ỹ1

ỹ2

ỹ3

ỹ4


 . (2.9)

Implementing this change of variables in the magnetic pp-wave metric gives

ds2 = −2dx+dx− −
(
ỹ2 + z2

)
(dx+)2 + dỹ2 + ỹ2dΩ2

3 + dz2 + z2dΩ̃2
3 ;

precisely the (J, 0, 0) metric of (2.1). The corresponding 5−form field is

F(5) =
4

gs
dx+ ∧

(
dz1 ∧ dz2 ∧ dz3 ∧ dz4 + dy5 ∧ dy6 ∧ dy7 ∧ dy8

)
.

In these coordinates, the construction of giant gravitons in this background is relatively

straightforward. After all, having made the rotation to the z coordinates, it remains only

to

• Parameterize the 3−dimensional worldvolume of the giant in static coordinates as

Z1 = z cos θ cos φ2,

Z2 = z sin θ cos φ3,

Z3 = z cos θ sinφ2,

Z4 = z sin θ sin φ3.

• Substitute this ansatz into the worldvolume metric in lightcone gauge and,

• Compute the corresponding energy functional E(z) together with it’s turning points.

This simplicity does not, unfortunately, translate to the γ̂−deformed pp-wave. Neverthe-

less we can still extract some useful lessons from this exercise. In particular, inverting

the coordinate transformation (2.9) gives the appropriate coordinatization of the giant

worldvolume in magnetic coordinates as

Ỹ 1 = z cos θ cos(φ2 − x+),

Ỹ 2 = z sin θ cos(φ3 − x+),

Ỹ 3 = z cos θ sin(φ2 − x+),

Ỹ 4 = z sin θ sin(φ3 − x+).
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These coordinates are manifestly x+, lightcone time dependent. Physically, the giant on

this pp-wave background also rotates with equal angular momentum in both the (ỹ1, ỹ3)

and (ỹ2, ỹ4) planes. It is precisely this form of the magnetic coordinates that we will use

of the construction of giant gravitons in the deformed pp-wave of [35, 36]. Finally, to close

this section it is worth mentioning that in lightcone coordinates, the D3−brane action is,

not surprisingly, identical to (2.4).

3. The Lunin-Maldacena geometry and its Penrose limits

In principle, the Lunin-Maldacena construction [30] is identical to that used in generating

the holographic duals of noncommutative field theories [33]. It hinges on the use of an

SL(2, R) transformation of the full SL(3, R) × SL(2, R) duality group of type IIB super-

gravity compactified along a corresponding U(1)×U(1) two-torus. In practice, if the metric

of this two-torus is denoted by g and the NS-NS 2−form by B then the Lunin- Maldacena

deformation is implemented by making the replacement

τ ≡ B + i
√

g −→ τγ =
τ

1 + γτ
. (3.1)

Since this deformation is an exactly marginal one, the AdS factor remains unchanged. In

order to apply this construction to the gravitational AdS5 × S5 background,9

ds2 = R2

(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 +
3∑

i=1

dµ2
i + µ2

i dφ2
i

)
,

F(5) = 4R4e−φ0 (ωAdS5 + ωS5) , (3.2)

eφ = eφ0 ,

we first define three new angles through

φ1 = ψ + ϕ1 + ϕ2, φ2 = ψ − ϕ1, φ3 = ψ − ϕ2 , (3.3)

then choose a U(1) × U(1) subgroup that acts by shifting ϕ1 and ϕ2. The corresponding

two-torus along which we compactify has τ parameter

τ = iR
√

µ2
1µ

2
2 + µ2

1µ
2
3 + µ2

2µ
2
3 ,

Finally, applying the Lunin-Maldacena deformation (3.1) gives the type IIB supergravity

9Here, (µ1, µ2, µ3) = (cos α, sin α cos θ, sin α sin θ) and the common radius of the AdS5 and S5 parts of

the geometry, R4 = 4πeφ0Nl4s . Note also that in the original undeformed geometry, the NS-NS 2−form

B = 0. and the coordinates have been chosen to manifestonly a U(1)3 subgroup of the full SO(6) isometry

of the round 5−sphere.
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multiplet,

ds2 = R2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 + dα2 + G cos2 α dφ2
1 + sin2 α(dθ2

+G cos2 θ dφ2
2+G sin2 θ dφ2

3)+γ̂2G cos2 α sin4 α cos2 θ sin2 θ (dφ1+dφ2+dφ3)
2
]
,

B(2) = γ̂R2G
(

sin2 α cos2 α cos2 θ dφ1 ∧ dφ2 + sin2 α cos2 α sin2 θ dφ3 ∧ dφ1

+ sin4 α cos2 θ sin2 θ dφ2 ∧ dφ3

)
,

F(3) = −4γ̂

gs
R2 cos2 α sin3 α cos θ sin θ dα ∧ dθ ∧ (dφ1 + dφ2 + dφ3) ,

F(5) =
4

g5
R4

(
cosh ρ sinh3 ρ dt ∧ dρ ∧ dΩ3 + G cos α sin3 αdφ1 ∧ dα ∧ dΩ̃3

)
,

where G−1 = 1 + γ̂2
(
cos2 α sin2 α + sin4 α cos2 θ sin2 θ

)
and the rescaled γ̂ = R2γ. Since

the deformation is continuous, this one-parameter family of backgrounds are topologically

identical to that of the original round sphere. Clearly also, only the sphere part of the

geometry suffers any deformation with the original SO(6) isometry group breaking to a

U(1)3. This has important consequences for the Penrose limits of this background that we

wish to consider. In the undeformed case, all null geodesics lying inside the 5−sphere can

be rotated into each other by the action of the SO(6) isometry group. Now, with only a

U(1)3 group remaining, this is no longer the case. Indeed there are two distinct classes of

BPS geodesics whose Penrose limits result in non diffeomorphic pp-wave metrics. With τ

as a worldline coordinate and setting t = φ1 = φ2 = φ3 = τ , the maximum circles on the

deformed S5 with

(µ2
1, µ

2
2, µ

2
3) = (1, 0, 0), (0, 1, 0), (0, 0, 1),

furnish one set and the null geodesics with

(µ2
1, µ

2
2, µ

2
3) = (1/3, 1/3, 1/3),

the other. Since each of the (J, 0, 0), (0, J, 0) and (0, 0, J) orbits may be rotated into each

other with the residual isometry after the SL(2, R) action on the 5-sphere, we need only

focus on one of this set of orbits. To take the Penrose limit about the (J, 0, 0) orbit say, on

S5
γ , we set

ρ =
y

R
, α =

r

R
,

t = x+ +
x−

2R
, φ1 = x+ − x−

2R
,

and then take R → ∞. With a little algebra, it is easily seen that the resulting background
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fields are

ds2 = −2dx+dx− −
(
y2 +

(
1 + γ̂2

)
r2

)
(dx+)2 + dy2 + y2 dΩ2

3 + dr2 + r2 dΩ̃2
3,

B(2) = γ̂r2
(
cos2 θ dx+ ∧ dφ2 + sin2 θ dφ3 ∧ dx+

)
,

F(5) =
4

gs

(
y3 dx+ ∧ dy ∧ dΩ + r3 dx+ ∧ dr ∧ dΩ̃3

)
(3.4)

C(4) = − 1

gs

(
y4 dx+ ∧ dΩ3 + r4 dx+ ∧ dΩ̃3

)

C(2) = 0,

F(3) = dC(2) = 0,

with dΩ̃3 = sin θ cos θ dθ ∧ dφ1 ∧ dφ3 the standard volume element on the round 3−sphere.

Closed strings on this pp-wave were quantized, and their relation to the BMN limit of the

dual N = 1 field theory was studied initially in [31] and then in the current context in [30].

In a remarkable feat of reverse engineering, the authors of [31] found that, in lightcone

gauge x+ = τ , the theory on the worldsheet is a massive one with a transverse oscillation

spectrum in the deformed sphere directions of

ωn =

√

1 +

(
n

|p+| ± γ̂

)2

, (3.5)

by working backwards from knowing the spectrum of anomalous dimensions of the corre-

sponding gauge theory operators. This result was later confirmed by direct computation

in [30].

An altogether different Penrose limit can be taken by focussing on states having charges

near (J, J, J). These live near the null geodesic τ = ψ with α0 = cos−1(1/
√

3) and θ0 = π/4.

Setting

θ =
π

4
+

√
2

3

x1

R
, α = α0 −

x2

R
, ρ =

y

R
,

ϕ1 =
x̃3

R
ϕ2 =

x̃4

R
, t = x+ +

x−

2R
, ψ =

x−

2R
− x+ ,

redefining

x3 =

√
2

3 + γ̂2

(
x̃3 +

1

2
x̃4

)
, x4 =

√
3

2(3 + γ̂2)
x̃4 ,

and taking the R → ∞ limit gives the pp-wave metric

ds2 = −2dx+dx− −
(

8∑

a=5

(xa)2 +
4γ̂2

3 + γ̂2

(
(x1)2 + (x2)2

)
)

(dx+)2 +

8∑

a=5

(dxa)2

+
4∑

i=1

(dxi)2 +
4
√

3√
3 + γ̂2

(x1dx3 + x2dx4)dx+ . (3.6)
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In this same limit, the remaining fields in the IIB multiplet are

B(2) =
γ̂√
3

dx3 ∧ dx4 +
2γ̂√
3 + γ̂2

dx+ ∧
(
x1dx4 − x2dx3

)
,

C(2) =
2γ̂√
3gs

dx+ ∧
(
x2dx1 − x1dx2

)
, (3.7)

F(5) =
4

gs
dx+ ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
,

e2φ =
1

1 + γ̂2
e2φ0 .

It is immediatly evident from the non-vanishing RR 2−form and constant dilaton that

this pp-wave differs rather nontrivially from the former pp-wave. Certainly, since the

3−brane couples to the RR 2−form, it might already be expected that the physics of

giant gravitons is markedly more sophisticated on this background. Closed strings in this

background, their supersymmetries and dual gauge theory operators were first studied

in [35, 36]. There, it was noticed independently that a change of coordinates from x− to

x− +
√

3/(3 + γ̂2)(x1x3 + x2x4) brings the (J, J, J) pp-wave metric into the homogeneous

plane wave form [34]

ds2 = −2dx+dx− −
[

8∑

a=5

(xa)2 +
4γ̂2

3 + γ̂2

(
(x1)2 + (x2)2

)
]

(dx+)2

+
8∑

i=1

(dxi)2 + 2

√
3

3 + γ̂2

(
x1dx3 − x3dx1 + x2dx4 − x4dx2

)
dx+ , (3.8)

after which it is a short, if somewhat technical, task to quantize the string sigma model and

compute the full closed string spectrum which, in lightcone gauge and units of 2πα′ = 1

reads

ωn = 1 ±
√

1 + 4n2 . (3.9)

Crucially, the closed string spectrum is completely independent of the deformation. Ev-

idently the deformation of the geometry is exactly compensated for by the now non-

vanishing B−field. Added support for this conclusion is given by a computation of the

spectrum of anomalous dimensions of the corresponding operators in the dual N = 1

gauge theory. The operators in question were proposed in [35] to be of the form

Oγ̂
(p) =

∑

n,m

tr
(
Oγ̂

n,m

)
δm−n,p , (3.10)

where p = 0, 1, . . . , J and the Oγ̂
n,m are built out of the complex Higgs’s Φ1,Φ2 and Φ3 in

the gauge theory by taking one of the Φ’s to define a “background” lattice and inserting

the other two as impurities hopped to the n− and m−th postions respectively. The matrix

of anomalous dimensions of the Oγ̂
(p) was then numerically checked to be identical, in the

large J limit, to that of the corresponding undeformed operators [35]. This is in precise

agreement with the string theory prediction.
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One final point that deserves mentioning about this particular pp-wave geometry con-

cerns its supersymmetry content. Our starting point, the type IIB AdS5 × S5 background

is maximally supersymmetric in 10−dimensions. It’s pp-wave limit is, famously, also maxi-

mally supersymmetric and preserves all 32 of the supersymmetries. The Lunin-Maldacena

γ̂−deformation, of course, breaks a number of these. Exactly how many, can be computed

by solving the Killing spinor equations for the backgrounds. Fortunately this rather tech-

nical exercise can be circumvented by using the fact that the γ̂−deformation and Penrose

limits commute [30, 36]. In other words, starting from AdS5 × S5, Penrose limits may

be taken along (J, 0, 0) and (J, J, J) orbits to get the respective pp-waves discussed in the

previous section. An approriate set of coordinates is then selected and compactified on a

torus and the SL(2, R) action applied along this torus. Finally, decompactifying the torus

directions gives the (J, 0, 0) and (J, J, J) deformed pp-waves respectively. Of the 32 Killing

spinors associated to the original pp-wave backgrounds, only those that are independent of

the torus coordinates will survive the SL(2, R) transformation. For the (J, 0, 0) deformed

pp-wave, these include the standard 16 supersymmetries generically preserved by pp-waves

plus an additional 8 so-called supernumenary supersymmetries giving a total of 24 alto-

gether [31]. On the other hand, while the (J, J, J) deformed pp-wave preserves the same

standard 16 Killing spinors, only 4 of the remaining 16 survive the SL(2, R) transformation

as supernumenary supersymmetries. This gives a total of 20 for this background.

4. Giants on the deformed pp-wave

Having developed the background on which we will work, we now proceed to the main focus

of this work, namely the existence and stability of giant gravitons on these geometries. We

begin with the deformed (J, 0, 0) pp-wave of [30, 31] and then proceed to the more difficult

case of the pp-wave constructed around the Jφ1 = Jφ2 = Jφ3 geodesic. The physics of the

problem here consists of a D3-brane wrapping the S3 in the deformed 5-sphere and orbiting

with fixed angular momentum along some great circle on S5
γ . The Penrose limit in both

cases is along this orbital direction - the φ1 equatorial circle in the former case and the ψ

orbit in the latter. Consequently, the worldvolume of the giant is of spherical topology (a

(+, 3, 0) brane in the notation of [26]. Had we boosted along a different direction, the brane

worldvolume would have included both lightcone directions x+ and x− and two transverse

spatial directions. We do not know whether these D−brane configurations are supported

on this background and leave this for future consideration.

4.1 (J, 0, 0), (0, J, 0) and (0, 0, J) orbits

On this class of geodesics, it will suffice to consider a D3−brane moving along the φ1

equitorial circle with fixed angular momentum and then take the Penrose limit along this

same orbit. Consequently, we will take as an ansatz for the giant graviton solution,

φ1 = ωt; σ1 = θ; σ2 = φ2; σ3 = φ3. (4.1)
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Figure 1: The giant graviton lightcone Hamiltonian on the (J, 0, 0) pp-wave exhibits two degenerate

minima corresponding to the point and giant gravitons respectively.

with static gauge specified by

X+ = λτ ; X− = µτ ;

X1 = r cos θ cos φ2; X2 = r cos θ sin φ2; (4.2)

X3 = r sin θ cos φ3; X4 = r sin θ sin φ3.

The lightcone gauge constraint X+ = τ is enforced by evaluating all expressions at λ = 1.

Clearly, from the form of the deformed metric, any excitations in the AdS direction are

unchanged by the deformation. Consequently, the background also supports AdS giants

(i.e. those that are blown up along the S3 of the AdS5 part of the geometry). While these

AdS giant solutions themselves are not affected by the deformation, their spectra of small

fluctuations will be. however, we leave the study of these solutions for future work. For

now, let’s turn off any AdS fields;

Xa = 0 a = 5, 6, 7, 8.

In this pp-wave limit, since the dilaton remains constant up to an overall factor of G and

G → 1, the D3-brane action in this geometry is simply10

S = −T3

gs

∫
d4σ

√
−det (P[g − B]) + T3

∫
P [C(4)] (4.3)

where, as usual, P[X] denotes the pullback of the spacetime field X to the brane worldvol-

ume and gs = exp(φ0) is the 10-dimensional string coupling. In what follows, it will prove

10We thank M. Pirrone for pointing out that the supergravity conventions in [27] imply that the modified

field strength F = F − B. With the worldvolume gauge field turned off, this means that the NS-B-field

enters the the Born-Infeld action as
p

−det(P [g − B]) and the Chern-Simons term as C4 − C2 ∧ B.
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more useful to rewrite the NS B-field in cartesian coordinates on the brane worldvolume.

This is easily seen to be

B(2) = γ̂ dX+ ∧ (X1 dX2 − X2 dX1 + X4 dX3 − X3 dX4).

Focussing first on the Born-Infeld part of the action, we first define the pullback

Dµν = P[g − B]µν = Xα
µ Xβ

ν gαβ − Xα
µ Xβ

ν Bαβ , (4.4)

where α, β, . . . are spacetime indices and µν, . . . worldvolume ones. With a little tedious

algebra, the components of Dµν are readily computed as

Dµν =




−2λµ − λ2(1 + γ̂2)r2 0 −γ̂λr2 cos2 θ γ̂λr2 sin2 θ

0 r2 0 0

γ̂λr2 cos2 θ 0 r2 cos2 θ 0

−γ̂λr2 sin2 θ 0 0 r2 sin2 θ


 .

Notice that all off-diagonal contributions to Dµν come from the deformation. Consequently,

turning off γ̂ manifestly reduces Dµν to that of the undeformed pp-wave giant graviton.

Computing the determinant of this matrix, we find that

det Dµν = −r6 sin2 θ cos2 θ(2λµ + λ2r2). (4.5)

On substituting this into the Born-Infeld action, the corresponding Lagrangian is read off

as

LDBI = −T3Ω̃3

gs
r3

√
2λµ + λ2r2, (4.6)

where Ω̃3 =
∫

dθdφ2dφ3 sin θ cos θ = 2π2 is the volume of the transverse 3-sphere that the

giant expands into. That the volume element that arises in the DBI action is the standard

one on the round sphere is a good consistency check of our sperical ansatz. We will return

to this point a little later in the construction of giant gravitons moving along (J, J, J)

orbits. Returning to our present construction, it remains to compute the Chern-Simons

contribution to the full action. Since the only RR field that survives this Penrose limit is

C(4), this is particularly easy

SCS = T3

∫
C(4) =

T3

gs

∫
r4 sin θ cos θ dX+ ∧ dθ ∧ dφ2 ∧ dφ3

=
T3λ

gs

∫
dτ

∫
dθdφ2dφ3 r4 sin θ cos θ.

The corresponding Chern-Simons Lagrangian is

LCS = Mλr4, (4.7)

where we have taken the liberty of defining M ≡ T3Ω̃3/gs. Putting this together then,

gives the full 3-brane Lagrangian

L = −M
[
r3

√
2λµ + λ2r2 − λr4

]
. (4.8)
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Notice that this Lagrangian is independent of the deformation parameter. This is not unlike

what happens to closed strings quantized on the pp-wave of [35, 36]. Recall that there, the

Lunin-Maldacena deformation had the effect of turning on an NS B-field as well as deform-

ing the geometry and both these contributions exactly cancel so that the closed string spec-

trum is γ̂−independent. Of course, the deformation affects more than just the NS sector of

the type IIB supergravity; it also turns on various form fields of the RR sector. Since strings

couple only to the geometry and the B−field none of these form fields mattered in the study

of the closed string spectrum. The 3−brane, on the other hand, also couples to the 2− and

4−form fields C(2) and C(4) respectively. However, while both C(2) and C(4) are affected

by the deformation, it is only C(4) that survives the (J, 0, 0) Penrose limit. It is hardly

surprising then, that the Lagrangian (4.8) is independent of the deformation parameter.

Importantly, this is in agreement with [39] where it was reported that giant gravitons with

angular momentum along just one of the equitorial directions of the deformed 5−sphere not

only survive the non-supersymmetric multi-parameter Frolov-Roiban-Tseytlin deformation

(and by restriction also the single-parameter Lunin-Maldacena deformation) but that they

are also independent of the deformation.

Returning to the construction of the giant graviton, the lightcone momentum of the

3−brane is

p+ = −δL

δµ
=

Mλr3

√
2λµ + λ2r2

, (4.9)

with an associated lightcone Hamiltonian

p− = Hlc = −δL

δλ
=

Mr3(µ + λr2)√
2λµ + λ2r2

− Mr4 .

This can be rewritten in terms of the lightcone momentum by solving the expression for

the latter for µ and substituting into that for p−. Consequently,

Hlc =
M2

2p+
r6 +

p+

2
r2 − Mr4 . (4.10)

As a function of the 3−brane radius, this Hamiltonian is extremized at

r =





0√
p+

3M√
p+

M

. (4.11)

As in the undeformed pp-wave, r = 0 is the point graviton while RG ≡
√

p+/M is the radius

of the giant graviton. A plot of the lightcone Hamiltonian, Hlc, in units of M = p+ = 1

is given in figure 1. With no way to energetically distinguish between the point and giant

gravitons on this background, we expect that the giant solution should be stable. This

expectation does, however, need to be verified in the spectrum of small fluctuations about

the giant. We do so in the next section.
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4.2 (J, J, J) orbits

The second of the two Penrose limits that result in BPS backgrounds - specifically that

taken about the (J, J, J) orbit - is a little more difficult to treat. The IIB mutiplet in

this background is given by (3.6) and (3.7). The construction of giant gravitons in this

background will be facilitated by choosing a slightly different gauge in which x− → x− +√
3

3+γ̂2 (x1x3 + x2x4). With this change of coordinates,

ds2 = −2dx+dx− −
(

8∑

a=5

(xa)2 + 4
γ̂2

3 + γ̂2

2∑

i=1

(xi)2

)
(dx+)2 +

8∑

a=5

(dxa)2

+

4∑

i=1

(dxi)2 + 2

√
3

3 + γ̂2

(
x1dx3 − x3dx1 + x2dx4 − x4dx2

)
,

B(2) =

√
γ̂2

3
dx3 ∧ dx4 + 2

√
γ̂2

3 + γ̂2
(x1dx4 − x2dx3) , (4.12)

C(4) − C(2) ∧ B(2) =
1

3!

(3 + γ̂2)

3gs
ǫijklx

idxj ∧ dxk ∧ dxl ,

eφ =
3

3 + γ̂2
gs .

Note, in particular that the RR 2−form is no longer vanishing and so its coupling to the

D3−brane via the C(2) ∧ B(2) Chern-Simons term is no longer trivial. Since the extended

structure of the giant graviton is essentially supported by the RR flux, any change in the

flux is likely to change the size and/or shape of the giant. Similar studies of pp-wave giant

gravitons were carried out in [28, 29] where it was reported that when a constant transverse

B−field is turned on in the background, giant gravitons respond by a deformation of their

shape. The situation in this background is markedly different though. Here, in addition

to a non-vanishing C(2), the NS B−field induced by the γ̂−deformation is certainly not

constant. Proceeding with the construction then, our ansatz for the giant graviton on this

background is

ψ = ωt , σ1 = θ , σ2 = φ2 σ3 = φ3 . (4.13)

Now, as promised, building on the lessons learnt from the undeformed pp-wave in magnetic

coordinates, we parameterize the D3−brane worldvolume by

X+ = λτ , X− = µτ ;

X1 = r cos θ cos

(
φ2 −

√
3

3 + γ̂2
X+

)
, X2 = r sin θ cos

(
φ3 −

√
3

3 + γ̂2
X+

)
;

X3 = r cos θ sin

(
φ2 −

√
3

3 + γ̂2
X+

)
, X4 = r sin θ sin

(
φ3 −

√
3

3 + γ̂2
X+

)
.

Note that, as in the undeformed pp-wave, this parameterization of the giant worldvolume

is manifestly time-dependent. As in that case, we could perform a coordinate rotation to

static Rosen coordinates but this comes at a cost of a significantly more cumbersome action
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for the D3−brane. Instead, we choose to work in the Brinkmann coordinates above, where

at least the physics of the problem is slightly more transparent. As before, we denote the

pullback of the combination of the metric and NS 2−form by Dµν = P[g − B(2)]µν . The

time components of Dµν are then easily computed as

Dττ = −2λµ − λ2 3

3 + γ̂2

(
r2 + 4

γ̂

3
(cos2 θ cos2 φ2 + sin2 θ cos2 φ3)

)
,

Dτθ = −Dθτ = λ

√
γ̂2

3 + γ̂2
r2

(
cos2 θ cos φ2 sin φ3 + sin2 θ sin φ2 cos φ3

)
,

Dτφ2 = −Dφ2τ = −λ

√
γ̂2

3 + γ̂2
r2 cos θ sin θ cos φ2 cos φ3 ,

Dτφ3 = −Dφ3τ = λ

√
γ̂2

3 + γ̂2
r2 cos θ sin θ cos φ2 cos φ3 ,

while its spatial components are

Drs =




r2 − γ̂√
3
r2 cos2 θ cos φ2 sin φ3 − γ̂√

3
r2 sin2 θ sin φ2 cos φ3

γ̂√
3
r2 cos2 θ cos φ2 sin φ3 r2 cos2 θ γ̂√

3
r2 cos θ sin θ cos φ2 cos φ3

γ̂√
3
r2 sin2 θ sin φ2 cos φ3 − γ̂√

3
r2 cos θ sin θ cos φ2 cos φ3 r2 sin2 θ


,

where r, s = θ, φ2, φ3. For ease of notation, we have set τ = 0 above. The time dependence

of the solution can be restored by replacing φi with φi−
√

3
3+γ̂2 X+. Then, with Y i ≡ Xi/r,

i.e. the embedding coordinates of a unit 3−sphere and a little algebra, the determinant of

the pullback can be expressed as

− detDµν = r6 cos2 θ sin2 θ

[
2λµ

(
1 +

γ̂2

3

(
(Y 1)2 + (Y 2)2

))

+ λ2r2 3

3+γ̂2

(
1 + 2

γ̂2

3

(
(Y 1)2+(Y 2)2

) )2

+λ2 γ̂2

3+γ̂2
r2

(
Y 1Y 4−Y 2Y 3

)2
]
.

The manifest dependence of this determinant on the Y i - compared to, say the correspond-

ing expression in the (J, 0, 0) pp-wave - is strong evidence that the giant in this background

no longer retains its round 3−sphere shape. Evidently, our ansatz for the giant is unable

to capture the full shape deformation of the giant and requires some refinment. This is a

nontrivial exercise best left for future work. Nevertheless, we can still make some progress

- albeit limited - when the Lunin-Maldacena deformation is small. Toward this end, we will

take γ̂ small and expand all γ̂−dependent terms to lowest nontrivial order in γ̂. Expanding

to O(γ̂2) then, the D3−brane Lagrangian

L = −T3e
−φ

∫
d3σ

√
− detDµν + T3

∫
P

[
C(4) − C(2) ∧ B(2)

]
,
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becomes

L = −T3

gs

(
1 +

γ̂2

3

)
r3

√
2λµ + λ2r2

∫
dθdφ2dφ3 cos θ sin θ

×
√

1+
γ̂2

3(2λµ+λ2r2)

[
(2λµ+4λ2r2)((Y 1)2+(Y 2)2)+λ2r2(Y 1Y 4−Y 2Y 3)2−λ2r2

]

+2π2λ
T3

gs

(
1 +

γ̂2

3

)
r4 + O

(
γ̂4

)
,

or, using M = 2π2T3g
−1
s and the integrals

∫
dθdφ2dφ3 cos θ sin θ

(
(Y 1)2 + (Y 2)2

)
= π2 ,

and

∫
dθdφ2dφ3 cos θ sin θ

(
Y 1Y 4 − Y 2Y 3

)2
=

π2

6
,

L = λMr4 − Mr3
√

2λµ + λ2r2 +
γ̂2

3

[
λMr4 − Mr3

5
2λµ + 37

24λ2r2

√
2λµ + λ2r2

]
+ O

(
γ̂4

)
.

The corresponding lightcone momentum

p+ = −p− = −δL

δµ

=
λMr3

√
2λµ + λ2r2

+
γ̂2

3

λMr3

(2λµ + λ2r2)3/2

[
5

2
λµ +

23

24
λ2r2

]
+ O

(
γ̂4

)
. (4.14)

To compute the lightcone Hamiltonian, we need to eliminate any explicit µ−dependence

in the expression for p−. In anticipation, solving (4.14) for µ to order γ̂2 we get,

λµ ∼ 1

2

(
λMr3

p+

)2

− 1

2
λ2r2 +

γ̂2

3

(
5

4

(
λMr3

p+

)2

− 7

24
λ2r2

)
. (4.15)

Finally, to lowest nontrivial order in γ̂, the lightcone Hamiltonian

p− ∼ r2

2p+

[
M2r4

(
1 +

5

6
γ̂2

)
− 2Mp+r2

(
1 +

γ̂2

3

)
+ (p+)2

(
1 +

7

36
γ̂2

)]
. (4.16)

As a rough check, note that this reduces to the correct undeformed Hamiltonian in the

γ̂ → 0 limit. In fact, writing it as

Hlc ∼
[

M2

2p+
r6 +

p+

2
r2 − Mr4

]
+ γ̂2

[
5M2r6

12p+
− Mr4

3
+

7(p+)2r2

72

]
,

it is clear that, at least to O(γ̂2), the Hamiltonian is positive semi-definite, vanishing only

at r = 0. We have checked numerically that this property persists even up to order γ̂4.

Figure 2 is a plot of the lightcone Hamiltonian (4.16) as a function of r.
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Figure 2: The deformation lifts the degenerate minima in the (J, J, J) pp-wave.

Notice now that the once degenerate vacuum at finite radius is lifted by the deformation.

Consequently, the energy of the giant is greater than that of the point graviton on this

background and the giant graviton is no longer a stable state in the theory. Indeed, beyond

a certain critical value of the deformation parameter γ̂ ∼ 1 it seems the second minimum

vanishes and the giant is no longer a solution even. This is in good agreement with the

results of [29] and, especially [22]. Here too, as the deformation is increased from zero, the

C(2)∧B(2) contribution to the Chern-Simons term grows faster than the four form flux term

and eventually dominates. However it is important to bear in mind that our analysis is

carried out perturbatively in γ̂ and any conclusions drawn at large γ̂ need to be done with

care. So, although numerical results up to O(γ̂4) seem to support the reported behaviour

of the D3−brane lightcone Hamiltonian, there is probably not too much to be gained from

estimating the critical value of γ̂ at which the second minimum vanishes - at least until a

more detailed study of the deformation of the giant on this pp-wave is completed.

5. Small fluctuations and stability of giants

The spectrum of small fluctuations about a giant graviton background encodes many in-

teresting properties of the equilibrium configuration [9]. For instance, since zero energy

modes in the vibration spectrum correspond to a family of solutions each having the same

energy and angular momentum, the study of these modes is important in determining the

ability of the giant ansatz in capturing all the classical BPS states. More relevantly for us,

any perturbative instability in the giant configuration will appear in the fluctuation spec-

trum as a tachyonic mode. In this section we will systematically investigate the spectrum

of small fluctuations about the equilibrium configurations of the pp-wave giant gravitons

beginning first with the giant on the maximally supersymmetric type IIB pp-wave and
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then proceeding to the γ̂−deformed (J, 0, 0) background. While the vibration spectrum of

giants on the undeformed pp-wave is not unknown [28, 29], we will rederive it here using the

Lagrangian methods of [9] primarily by way of review and to establish our notation but also

to facilitate comparison with the deformed giant spectrum. Essentially the Hamiltonian

computation proceeds by fixing all the conserved quantities in the problem, diagonalising

the Hamiltonian11 and extracting the classical oscillation frequencies. The problem is that

any mode for which the conserved quantities are not held fixed will necessarily be excluded

from the spectrum. We will therefore proceed with the Lagrangian analysis of [9].

5.1 Undeformed giants

Our starting point here is the giant graviton configuration on the pp-wave (2.1) supported

by the 5−form flux (2.3). This equilibrium configuration is specified by

X+ = λτ, X− = ντ,

X1 = r0 cos θ1 cos θ2, X2 = r0 sin θ1 cos θ3, (5.1)

X3 = r0 cos θ1 sin θ2, X4 = r0 sin θ1 sin θ3.

Correspondingly, the perturbed configuration has coordinates12

X+ = τ, X− = ντ + ǫδx−, (5.2)

r = r0 + ǫδr, Xa = ǫδxa,

and σi = θi ∈ S3. This ansatz is then substituted into the D3−brane action

S = −T3

gs

∫
dτd3σ

√
− det(P[g]) + T3

∫
P[C(4)],

and, as we are interested primarily in the fluctuation spectrum, expanded up to quadratic

order in the perturbation parameter, ǫ. It is then quite straightforward to compute the

induced metric on the brane worldvolume. With Dµν ≡ P[g]µν , we find

D0i = Di0 ≈ −2ǫ∂iδx
− + ǫ2 [(∂τ δr)(∂iδr) + (∂τ δxa)(∂iδx

a)] ,

Dij ≈ r2
0gij + 2ǫr0δrgij + ǫ2

[
δr2gij + (∂iδr)(∂jδr) + (∂iδx

a)(∂jδx
a)

]
,

and

D00 ≈ −(2ν + µ2r2
0)

[
1 + ǫ

(
2∂τδx

− + 2µ2r0δr

2ν + µ2r2
0

)

+ ǫ2

(
µ2δr2 + µ2(δxa)2 − (∂τ δr)2 − (∂τ δxa)2

2ν + µ2r2
0

)]
.

A judicious application of Stokes’ theorem on the D3−brane worldvolume allows for the

Chern-Simons contribution to the action to easily be written down as

SCS =
T3

gs
µ(r0 + ǫδr)4

∫
dτ d3σ

√
|gij | ,

11For small perturbations the Hamiltonian is a quadratic form in the coordinates and momenta represent-

ing the perturbation and may be diagonalised using standard methods for the diagonalisation of quadratic

forms.
12Without loss of generality, λ can be set to unity.
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Substituting this, together with the metric pullback terms above, into the worldvolume

action, we can read off the term linear in ǫ as

δS = ǫ
T3Ω3

gs

∫
dτ

r2
0√

2ν + µ2r2
0

[(
6ν + 4µ2r2

0 − 4µr0

√
2ν + µ2r2

0

)
δr + r0

∂δx−

∂τ

]
(5.3)

Since we vary with fixed boundary conditions (i.e. ∂τδx
− vanishes at the endpoints of τ)

and the coefficient of ∂τ δx− is constant, this term gives no contribution to the first order

variation of the action. In order for the radial perturbation to vanish, on the other hand,

we must have ν = 0. The other value of ν for which the δr coefficient vanishes, ν = −4
9µ2r2

0,

is a nonphysical solution and consequently discarded. Next we evaluate the perturbations

second order in ǫ. With the choice of ν = 0 above, these terms assemble as

δ2S = −ǫ2 T3

gs
µr3

0

∫
dτd3σ

√
|gij |

δr

2µ2r2
0

[
∂2

∂τ2
− µ2 1√

|gkl|
∂i

(√
|gkl|gij∂j

)]
δr

−2
δx−

2µ2r3
0

∂δr

∂τ
+ 2

δr

2µ2r3
0

∂δx−

∂τ

+
δx−

2µ4r4
0

[
∂2

∂τ2
− µ2 1√

|gkl|
∂i

(√
|gkl|gij∂j

)]
δx−

+
δxa

2µ2r2
0

[
µ2 +

∂2

∂τ2
− µ2 1√

|gkl|
∂i(

√
|gkl|gij∂j)

]
δxa . (5.4)

In order to analyze the resulting vibration spectrum, the fluctuations are first decomposed

into their respective Fourier components:

δxµ = δ̃xµ e−iωτ Yl(θ1, θ2, θ3) . (5.5)

Here, the Yl are 4-dimensional spherical harmonics satisfying

1√
|gmn|

∂i

(√
|gmn|gij∂j

)
Yl = −QlYl , (5.6)

with the eigenvalues Ql = l(l+2). Substituting the Fourier expansion into (5.4) we see that

the fluctuations in the Xa directions are separable. Their spectrum is easily determined

to be

ω2
a = µ2(1 + Ql) . (5.7)

The radial and X− fluctuations are a bit more tricky. They are coupled, and satisfy the

second order system

[
Ql − ω2

µ2
−2i
µ2r0

ω
2i

µ2r0
ω Ql

µ2r0
0
− ω2

µ4r2
0

][
δ̃r

δ̃x−

]
= 0 . (5.8)

Solving this for ω leads to the spectrum

ω2
± = µ2

(
2 + Ql ± 2

√
1 + Ql

)
, (5.9)
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At this point some comments are in order. Most obvious in the above spectrum is its

independence of the radius r0 of the brane. This should be compared to the corresponding

spectrum of sphere giants on AdS5 × S5 where it was demonstrated in [9] that a suitable

rescaling of the fluctuation fields completely scales out all r0 dependence of the small

fluctuation action. Secondly, note that as there are no complex frequencies, there are no

tachyonic modes. Consequently, these giant gravitons on the pp-wave are stable. This is

in perfect agreement with the results of [28, 25]. Moreover, there is a zero mode when

l = 0, Ql = 0 on the negative branch of (5.9). This corresponds to the statement that

increasing the size of the giant (which relates to increasing the light-cone momentum)

costs no energy, just as we expect.

5.2 Deformed giants

Moving on to the deformed case now, we focus on the giant gravitons on the (J, 0, 0) pp-

wave. As in the undeformed case above, we take a static, spherical ansatz for the giant,

wrapping the deformed S3 in the light cone gauge and allow fluctuations in the transverse

directions. The ansatz for the perturbed giant is, as before

X+ = τ , X− = ντ + ǫδx− ,

X1 = r cos θ cos φ2 , X2 = r cos θ sinφ2 , (5.10)

X3 = r sin θ cos φ3 , X4 = r sin θ sin φ3 ,

where r = r0 + ǫδr and the AdS fluctuations are Xa = ǫδxa. Expanded up to second order

in ǫ the components of the pullback Dµν = P[g − B(2)]µν appearing in the Born-Infeld

contribution to the D3−brane action,

S = −T3

gs

∫
dτdΩ

√
− detDµν + T3

∫
P[C(4) − C(2) ∧ B(2)] (5.11)

are

Dττ = −2ν −
(
1 + γ̂2

)
r2
0 + ǫ

[
−2∂τ δx− − 2

(
1 + γ̂2

)
r0δr

]

+ǫ2

[
−

∑

a

(δxa)2 −
(
1 + γ̂2

)
δr2 +

∑

I=a+r

(
∂τδx

I
)2

]
,

Dτθ = Dθτ = −ǫ∂θδx
− + ǫ2

∑

I=a+r

(
∂τδx

I
) (

∂θδx
I
)

,

Dτφ2/φ2τ = ±γ̂r2
0 cos2 θ + ǫ

[
−∂2δx

− ± 2γ̂r0 cos2 θδr
]

+ǫ2

[
∑

I=a+r

(
∂τ δxI

) (
∂2δx

I
)
± γ̂ cos2 θδr2

]
, (5.12)

Dτφ3/φ3τ = ∓γ̂r2
0 sin2 θ + ǫ

[
−∂φ3δx

− ∓ 2γ̂r0 sin2 θδr
]

+ǫ2

[
∑

I=a+r

(
∂τ δxI

) (
∂φ3δx

I
)
∓ γ̂ sin2 θδr2

]
,

Dij = r2
0grs + 2ǫr0gijδr + ǫ2

[
gijδr

2 +
∑

I=a+r

(
∂iδx

I
) (

∂jδx
I
)
]

.
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Here,
∑

I=a+r is shorthand for a summation over both the AdS fluctuations, δxa and radial

perturbation δr and the undeformed spatial metric, grs is

grs =




r2

r2 cos2 θ

r2 sin2 θ


 .

Then, keeping terms second order and lower in ǫ, the determinant of Dµν is

− det Dµν = r6
0 cos2 θ sin2 θ

(
2ν + r2

0

)
+ ǫ

(
r5
0 cos2 θ sin2 θ

) [
2r0∂τ δx− +

(
12ν + 8r2

0

)
δr

]

+ǫ2
(
r4
0 cos2 θ sin2 θ

)
[
(
30ν + 28r2

0

)
δr2 + r2

0

∑

a

(δxa)2

+
∑

I=a+r

(
(
2ν+r2

0

) ∑

s

gii
(
∂iδx

I
)2

+γ̂2r2
0

(
∂φ2δx

I−∂φ3δx
I
)2−r2

0

(
∂τδx

I
)2

)

+12 r0δr
(
∂τδx

−)
+

∑

s

gii
(
∂iδx

−)2

]
. (5.13)

Notice that the deformation has cancelled in the zeroth and first order fluctuations. This is

just a manifestation, at the level of fluctuations, of the NS B−field exactly compensating

for changes in the metric induced by the Lunin-Maldacena deformation. Interestingly

though, this is not carried through to the higher order terms. At O(ǫ2) for example, the

fluctuation spectrum exhibits a “magnetic field” like splitting due to the deformation. The

Chern-Simons term on the other hand is trivially integrated over the sphere to give

SCS =
T3

gs
Ω3

∫
dτ

(
r4
0 + 4ǫr3

0δr + 6ǫ2r2
0δr

2
)

, (5.14)

to second order in ǫ. Putting this all together, defining m ≡ T3/gs and expanding the

square root gives

S = −mΩ3r
3
0

∫
dτ

√
2ν + r2

0 − r0

−ǫ
mr3

0√
2ν + r2

0

∫
dΩ3dτ

[
∂τ δx− +

δr

r0

(
6ν + 4r2

0 − 4r0

√
2ν + r2

0

)]

−ǫ2 mr0

2
√

2ν + r2
0

∫
dΩ3dτ

[(
30ν + 28r2

0 − (6ν + 4r2
0)

2

2ν + r2
0

− 12r0

√
2ν + r2

0

)
δr2

+
∑

I=a+r

(
(2ν + r2

0)
∑

i

gii
(
∂iδx

I
)2

+ γ̂2r2
0

(
∂φ2δx

I − ∂φ3δx
I
)2 − r2

0

(
∂τ δxI

)2

)

+r2
0

∑

a

(δxa)2+ 2

(
6ν+2r2

0

2ν+r2
0

)
r0δr

(
∂τδx

−)
+

∑

i

gii
(
∂iδx

−)2− r2
0

2ν+r2
0

(
∂τ δx−)2

]
.

The physical solution is found by minimizing this action. At first order in ǫ, the term ∂τδx
−

vanishes since the endpoints in τ are held fixed. In addition, requiring that the remaining
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term proportional to δr vanish leads to the constraint ν = 0. There is, of course, a second

solution, ν = −4
9r2

0 but this is a maximum of the action, so we disregard it.

Proceeding to the next order, to find the fluctuation spectrum, the fluctuations can be

decomposed into eigenfunctions of the various differential operators in the second order

action. Fluctuations with energy ω have time dependence ∼ e−iωτ and the spherical

harmonics, Yl(Ω3) are eigenfunctions of

1√
|gkl|

∂i(
√

|gkl|gij∂j)Yl = −QlYl .

As observed above, the deformation introduces a splitting term which, after integrating by

parts, is γ̂2r2
0(∂φ2 − ∂φ3)

2. This breaks some of the degeneracy of the spherical harmonics.

Indeed, it is clear from its form that the eigenvalue of this operator is negative semi-definite.

Consequently, the spherical harmonics are diagonalized as

(
∂

∂φ2
− ∂

∂φ3

)2

Yl,α = −α2Yl,α , (5.15)

As in the undeformed case, vibrations of the giant in the AdS directions δxa decouple from

the rest of the fluctuations, and minimizing the second order action subject to the first

order constraint ν = 0 leads to the spectrum

ω2
a = 1 + γ̂2α2 + Ql , (5.16)

which is manifestly positive definite. The coupled radial and null fluctutations, δr and δx−

respectively, satisfy the linear system of equations
[

Ql − ω2 + γ̂2α2 −2i ω
r0

2i ω
r0

Ql−ω2

r2
0

][
δ̃r

δ̃x−

]
= 0 . (5.17)

Solving this for ω yields the spectrum

ω2
± = Ql +

(
2 +

1

2
γ̂2α2

)
±

√

4Ql +

(
2 +

1

2
γ̂2α2

)2

. (5.18)

Here, as in the case of the undeformed giant, the fluctuation spectrum is both manifestly

independent of the size of the equilibrium configuration, r0 and dependent on the deforma-

tion parameter. Since the latter enters into the spectrum as a positive contribution, it is

easy to see that ω2 is positive semi-definite and remains so irrespective of the deformation

strength. Again, this lack of complex frequencies is a signal of the perturbative stability

of these giants, exactly as was claimed in the previous section. Again, ω2 = 0 is one of

the solutions of the (δr, δx−) system when Ql = 0 reflecting the fact that the radius of the

equilibrium configuration can be taken to have any value allowed by the pp-wave geometry.

6. Comments on the dual operators

In this section we make some brief comments on the gauge theory operators dual to pp-

wave giants of both the deformed and undeformed kind and leave a more detailed study
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of the dual giant operators and the open strings attached to them to future study [37].

Shortly after an observation by Balasubramanian et.al. [10] that the correct description

of large single sphere-giant states in the dual N = 4 conformal field theory are of the

(sub)determinant form

Ok =
1

k!
ǫ
j1···jka1···aN−k

i1···ika1···aN−k
Φi1

j1
· · ·Φik

jk
, (6.1)

rather than single-trace operators of large R-charge, it was argued by Corley, Jevicki and

Ramgoolam in [10] that, more generally, the operators in the U(N) super Yang-Mills theory

dual to giant gravitons are Schur polynomials in the Higgs fields of the SYM multiplet,

χR (Z) =
1

n!

∑

σ∈Sn

χR(σ) tr (σZ) . (6.2)

Here, Z is one of three complex Higgs fields in the conformal field theory, n ∼ O(N) and

tr(σZ) =
∑

i1···iin

Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin
iσ(n)

.

The Schur polynomials are labelled by n−box Young diagrams and the χR(σ) are characters

of σ ∈ Sn in the representation R. The extension to the SU(N) gauge theory - and

consequent disentanglement of bulk and boundary degrees of freedom in giant graviton

dynamics - is non-trivial and may be found in [11]. It is not difficult to see that in the

totally antisymmetric representation, the Schur polynomial reduces to the subdeterminant

operator (6.1) - a single column Young diagram. Such column diagrams have a length

bounded by N and so encode in a very natural way the momentum cutoff observed in the

dynamics of sphere giants. Similarly, a giant graviton blown up along the AdS 3−sphere

is naturally identified with the completely symmetric representation - a single row Young

diagram whose length can grow without bound [10, 12]. Much of the power of the machinery

developed in the first of [10] derives from the fact that the multipoint correlators of these

Schur polynomial that encode much of the giant graviton dynamics can be computed

exactly. The 2− and 3−point correlators, for example, are given by

〈χR(Z)(x1)χS(Z̄)(x2)〉 = δRSfR
1

(x1 − x2)2nR
, (6.3)

〈χR1(Z)(x1)χR2(Z)(x2)χR3(Z̄)(x3)〉 = g(R1, R2;R3)fR3

1∏3
i=2(x1 − xi)

2nRi

,

where, with the product running over the boxes of a Young diagram associated to the

representation R, i labelling the rows and j the columns fR =
∏

i,j(N − i + j) and the

factor g(R1, R2;R3) is a Littlewood-Richardson coefficient - the multiplicity with which the

representations R3 appears in the tensor product of representations R1 and R2 [38].

The Penrose limit of the gravity theory manifests in the gauge theory as the double

scaling limit in which the U(1) R-charge J and the number of colours N both go to

infinity in such a way that the ratio J2/N remains fixed [24]. This BMN limit of the giant

operators in the undeformed N = 4 gauge theory was first investigated in [25] and we
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briefly summarize some of their results here. A sphere giant with large angular momentum

J is dual to a Schur polynomial labelled by a single column young diagram with J rows.

RJ ↔ ... ←− J boxes

With the technology developed in the second of [10] various extremal correlators obtained

from considering the overlaps of combinations of Schur polynomials may be exactly com-

puted. The normalized 3−point correlator, for example, is

〈χRJ1
(Z)χRJ2

(Z)χRJ
(Z̄)〉

||χRJ1
(Z)|| ||χRJ2

(Z)|| ||χRJ
(Z)|| =

√
(N − J1)! (N − J2)!

(N − J)!N !
. (6.4)

Using Stirling’s approximation for N ! at large N and assuming that J2/N is large, in the

BMN limit

〈χRJ1
(Z)χRJ2

(Z)χRJ
(Z̄)〉

||χRJ1
(Z)|| ||χRJ2

(Z)|| ||χRJ
(Z)|| ∼ e−J1J2/2N . (6.5)

Consequently, there is no mixing of multi-particle states and the single-particle giant gravi-

ton state dual to the Schur polynomial (6.2) is well defined. Similarly, the normalized over-

lap between a sphere giant with angular momentum J and a multi-particle Kaluza-Klein

state

〈(χ1(Z))JχJ(Z̄)〉
||(χ1(Z))J || ||χJ (Z)|| =

√
1

NJ

N !

J !(N − J)!
∼

√
1

J !
e−J2/2N . (6.6)

What about the giant gravitons in the deformed background studied above? The exactly

marginal Leigh-Strassler deformation of the super Yang-Mills gauge theory [15], recall, can

be realised as the Moyal-like deformation,

X ∗ Y = eiπγ̂(Q1
X

Q2
Y
−Q1

Y
Q2

X)XY , (6.7)

of the product of fields in the N = 4 Lagrangian [30]. Here (Q1
X , Q2

Y ) are the charges of

the corresponding fields under the U(1)1 × U(1)2 action. The Schur operator (6.2) dual

to the giant graviton, however, is a holomorphic polynomial in Z so each factor in the

product carries the same charge under U(1)1 × U(1)2. Evidently then, the operator that

we expect to be dual to a giant graviton on the deformed pp-wave obtained by taking a
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Penrose limit about a (J, 0, 0) geodesic, χR(Z), is blind to the γ̂−deformation. This is

certainly in agreement with the supergravity analysis of section 4.1. but almost trivially

so. To claim agreement between the two sides of the duality, we still need to reproduce

the spectrum of fluctuations about the giant configuration (5.18) in the gauge theory. A

much more formidable task, this is encoded in the dynamics of open strings attached to

the giant operator13 (6.2). Open strings in the gauge theory are given by operators of the

form W i
j = (M1M2 · · ·Mn)ij where the M ’s could be Higgs fields, their covariant derivatives

or even fermions. Following [13], the prescription for attaching open strings to the giant

graviton consists of removing some number of Z’s that make up the giant and replacing

them with the same number of words W . For a maximal sphere giant with a single open

string attached, for example, the resulting operator takes the form (up to a normalization)

Ok = ǫj1···jN

i1···iN Zi1
j1
· · ·ZiN−1

jN−1

(
Y kMY J−k

)iN

jN

, (6.8)

where the string of Y ’s build up the worldvolume of the string excitation with angular

momentum J ∼ O(
√

N) and the impurities M are oscillator excitations of the string, either

along the brane (M = X) or transverse to the giant worldvolume (M = Z). In any case,

hopping of the impurity along the chain introduces γ−dependent phase factors into the

correlators computed from the operators (6.8). It is the precise form of this γ−dependence

that we need to match with the fluctuation spectrum about the pp-wave giant. For giants

on the more general Frolov-Roiban-Tseytlin non-supersymmetric deformation of AdS5×S5,

a detailed study of such operators was carried out in [22] where superb agreement between

the gauge theory and supergravity was reported. Armed with some of the technology

developed there and in [35], we return to these questions shortly [37].

7. Summary and outlook

In this article we have initiated a study of giant gravitons on the pp-wave geometries

arising from the Lunin-Maldacena deformation of AdS5 × S5. In particular we find two

classes of giant graviton solutions, depending on whether the Penrose limit is taken about

null geodesics carrying only one Jφi
charge or those where all three Jφi

’s are non-zero. In

the former - of which the (J, 0, 0) pp-wave is a prototype - the giant graviton is energet-

ically degenerate with the Kaluza-Klein point-graviton irrespective of the strength of the

deformation. Like their undeformed counterparts, these spherical D3−branes exhibit a

fluctuation spectrum that is independent of the size of the giant and absent of tachyonic

modes indicating that they are stable objects in the supergravity theory. On the other

hand, in section 4.2 we find that giants on the (J, J, J) pp-wave suffer a deformation - not

unlike that of the squashed giants of [29] - due to non-vanishing contributions from the NS

13Fortunately, much of the difficulty in studying open strings attached to giant gravitons can be circum-

vented by following the remarkble proposal put forth in the series of articles [40]. In the first of these the

authors systematically develop a powerful set of diagramatic rules - based on the Young diagram labels of

the Schur polynomials - for computing the two-point correlation functions of various giant operators and

then use these to study the attachment of open strings to the giant worldvolume.
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B−field and RR 2−form to the D3−brane worldvolume action. Indeed, this deformation

of the 3−sphere giant makes a full analytic treatment of the problem much more difficult

than the (J, 0, 0) case. Nevertheless, we are able to make some progress in the small γ̂

limit. Up to O(γ̂4), we find that the energy of the giant graviton is lifted with respect

to the KK-graviton hinting that the giant graviton on this pp-wave wave background is

energetically unstable. Indeed, for sufficiently large γ̂ the second minimum of the lightcone

Hamiltonian vanishes altogether. Finally, in section 6. we have concluded with some brief

observations of the behaviour that we expect of the operators dual to these giant gravitons.

Arguably, we have only just scratched the surface in the study of these configurations

and many questions remain. For us, the first among these is a more complete analysis of

the (J, J, J) pp-wave giant. Clearly, this background deforms the 3−sphere worldvolume

of the D3−brane. The Lagrangian analysis carried out here has proven to be rather

nontrivial. However, similar deformations have been observed in the sightly simpler context

of giant gravitons in the maximally supersymmetric type IIB plane wave in the presence

of a constant B−field in [29]. There, a fairly complete treatment of the problem was

given using a Hamiltonian analysis and the emergence of a Nambu bracket structure in the

worldvolume action. This then offers some hope that an analytic solution may be found here

too. Secondly, this work began with the aim of determining the existence of giant graviton

solutions on the Lunin-Maldacena background. To this end, we have made some progress

in showing that at least the Penrose limit of this geometry supports these configurations.

Following on from this work and the supergravity results of [22] two, more recent articles

have since appeared that have succeeded in independently demonstrating the existence

of giant gravitons in the non-supersymmetric Frolov-Roiban-Tseytlin (and by subsequent

restriction to a single deformation parameter the Lunin-Maldacena) background. In [39]

both sphere and AdS giants are constructed for giants with angular momentum along

the (J, 0, 0), (0, J, 0) and (0, 0, J) class of orbits. As is the case for the corresponding pp-

wave studied in this article, these giant gravitons are not only blind to the deformation

but their fluctuation spectra match nicely with ours. On the other hand, the authors

of [41] begin from the giant graviton configurations in the undeformed AdS5 × S5 and,

by carefully following the boundary conditions defining the D3-brane in the supergravity

through the TsT transformation that maps AdS5×S5 to AdS5×S5
γ , find that the D3-brane

giant graviton not only survives the deformation but is described by a Hamiltonian (see

eq. (4.11) in [41])

H =
1

R cos α

√
J2

φ1
− 2Jφ1N sin4 α + N2 sin6 α ,

that is also manifestly indpendent of the deformation parameter. This is in excellent

agreement with both our results and that of [39]. More intriguingly, it was also found that

when the deformation parameter is rational, in addition to the D3-brane giants, the Lunin-

Maldacena geometry also admits a class of D5-brane giants wrapping the torus on which

the TsT transformation acts and with a non-vanishing world-volume gauge field strength

inversely proportional to the deformation parameter.

Returning to the case at hand though, there are, of course, also giants that expand

in the AdS directions of the pp-wave. Since the deformation is exactly marginal, these
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are not affected and straightforward to construct. However, their spectrum of fluctuations

will ! Exactly how, remains to be seen in this case. Then, of course, there is the question

of the operators dual to the deformed giants - some subset of the Schur polynomials that

survive the γ−deformation - the open strings attached to them and the various correlators

that need to be computed to match our supergravity results.

It seems clear then that the study of giant gravitons on these backgrounds is an ex-

tremely fruitful area and promises to shed much needed light on a complete understanding

of the gauge theory/gravity correspondence.
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[18] U. Gursoy and C. Núñez, Dipole deformations of N = 1 sym and supergravity backgrounds

with U(1) × U(1) global symmetry, Nucl. Phys. B 725 (2005) 45 [hep-th/0505100];

– 30 –

http://jhep.sissa.it/stdsearch?paper=08%282000%29040
http://arxiv.org/abs/hep-th/008016
http://jhep.sissa.it/stdsearch?paper=08%282000%29051
http://arxiv.org/abs/hep-th/0008016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C044001
http://arxiv.org/abs/hep-th/0008088
http://jhep.sissa.it/stdsearch?paper=11%282000%29027
http://arxiv.org/abs/hep-th/0010206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C025005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C025005
http://arxiv.org/abs/hep-th/0401173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C103%2C1081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C103%2C1081
http://arxiv.org/abs/hep-th/0004074
http://jhep.sissa.it/stdsearch?paper=11%282001%29009
http://arxiv.org/abs/hep-th/0109127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB658%2C281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB658%2C281
http://arxiv.org/abs/hep-th/0207199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C024013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C024013
http://arxiv.org/abs/hep-th/0009019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C5%2C809
http://arxiv.org/abs/hep-th/0111222
http://jhep.sissa.it/stdsearch?paper=04%282002%29034
http://arxiv.org/abs/hep-th/0107119
http://jhep.sissa.it/stdsearch?paper=11%282004%29081
http://arxiv.org/abs/hep-th/0410236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB376%2C75
http://jhep.sissa.it/stdsearch?paper=07%282004%29018
http://arxiv.org/abs/hep-th/0403110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB675%2C179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB675%2C179
http://arxiv.org/abs/hep-th/0306090
http://jhep.sissa.it/stdsearch?paper=03%282005%29006
http://arxiv.org/abs/hep-th/0411205
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://arxiv.org/abs/hep-th/0409174
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C95
http://arxiv.org/abs/hep-th/9503121
http://jhep.sissa.it/stdsearch?paper=04%282007%29035
http://arxiv.org/abs/hep-th/0608215
http://jhep.sissa.it/stdsearch?paper=08%282005%29030
http://arxiv.org/abs/hep-th/0505207
http://jhep.sissa.it/stdsearch?paper=07%282005%29032
http://arxiv.org/abs/hep-th/0505168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB725%2C45
http://arxiv.org/abs/hep-th/0505100


J
H
E
P
0
6
(
2
0
0
7
)
0
3
6

U. Gursoy, Probing universality in the gravity duals of N = 1 SYM by gamma deformations,

JHEP 05 (2006) 014 [hep-th/0602215];

N.P. Bobev, H. Dimov and R.C. Rashkov, Semiclassical strings, dipole deformations of

N = 1 SYM and decoupling of KK modes, JHEP 02 (2006) 064 [hep-th/0511216].

[19] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge - string duality for superconformal

deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192];

N.P. Bobev, H. Dimov and R.C. Rashkov, Semiclassical strings in Lunin-Maldacena

background, hep-th/0506063;

A.H. Prinsloo, gamma(i) deformed lax pair for rotating strings in the fast motion limit,

JHEP 01 (2006) 050 [hep-th/0510095];

H.-Y. Chen and S. Prem Kumar, Precision test of AdS/CFT in Lunin-Maldacena

background, JHEP 03 (2006) 051 [hep-th/0511164];

H.-Y. Chen and K. Okamura, The anatomy of gauge/string duality in Lunin-Maldacena

background, JHEP 02 (2006) 054 [hep-th/0601109];

S. Ryang, Rotating strings with two unequal spins in Lunin-Maldacena background, JHEP 11

(2005) 006 [hep-th/0509195].

[20] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201].

[21] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for (non)supersymmetric

deformations of N = 4 super Yang-Mills theory, Nucl. Phys. B 731 (2005) 1

[hep-th/0507021].

[22] R. de Mello Koch, N. Ives, J. Smolic and M. Smolic, Unstable giants, Phys. Rev. D 73 (2006)

064007 [hep-th/0509007].

[23] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal

supersymmetry, Class. and Quant. Grav. 19 (2002) L87 [hep-th/0201081].

[24] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021].

[25] H. Takayanagi and T. Takayanagi, Notes on giant gravitons on pp-waves, JHEP 12 (2002)

018 [hep-th/0209160].

[26] K. Skenderis and M. Taylor, Branes in AdS and pp-wave spacetimes, JHEP 06 (2002) 025

[hep-th/0204054]; An overview of branes in the plane wave background, Class. Quant. Grav.

20 (2003) S567 [hep-th/0301221].

[27] J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge

theory, hep-th/0003136.

[28] D. Sadri and M.M. Sheikh-Jabbari, Giant hedge-hogs: spikes on giant gravitons, Nucl. Phys.

B 687 (2004) 161 [hep-th/0312155].

[29] S. Prokushkin and M.M. Sheikh-Jabbari, Squashed giants: bound states of giant gravitons,

JHEP 07 (2004) 077 [hep-th/0406053].

[30] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086].

[31] V. Niarchos and N. Prezas, Bmn operators for N = 1 superconformal Yang-Mills theories and

associated string backgrounds, JHEP 06 (2003) 015 [hep-th/0212111].

– 31 –

http://jhep.sissa.it/stdsearch?paper=05%282006%29014
http://arxiv.org/abs/hep-th/0602215
http://jhep.sissa.it/stdsearch?paper=02%282006%29064
http://arxiv.org/abs/hep-th/0511216
http://jhep.sissa.it/stdsearch?paper=07%282005%29045
http://arxiv.org/abs/hep-th/0503192
http://arxiv.org/abs/hep-th/0506063
http://jhep.sissa.it/stdsearch?paper=01%282006%29050
http://arxiv.org/abs/hep-th/0510095
http://jhep.sissa.it/stdsearch?paper=03%282006%29051
http://arxiv.org/abs/hep-th/0511164
http://jhep.sissa.it/stdsearch?paper=02%282006%29054
http://arxiv.org/abs/hep-th/0601109
http://jhep.sissa.it/stdsearch?paper=11%282005%29006
http://jhep.sissa.it/stdsearch?paper=11%282005%29006
http://arxiv.org/abs/hep-th/0509195
http://jhep.sissa.it/stdsearch?paper=05%282005%29069
http://arxiv.org/abs/hep-th/0503201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB731%2C1
http://arxiv.org/abs/hep-th/0507021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C064007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C064007
http://arxiv.org/abs/hep-th/0509007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2CL87
http://arxiv.org/abs/hep-th/0201081
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://arxiv.org/abs/hep-th/0202021
http://jhep.sissa.it/stdsearch?paper=12%282002%29018
http://jhep.sissa.it/stdsearch?paper=12%282002%29018
http://arxiv.org/abs/hep-th/0209160
http://jhep.sissa.it/stdsearch?paper=06%282002%29025
http://arxiv.org/abs/hep-th/0204054
http://arxiv.org/abs/hep-th/0301221
http://arxiv.org/abs/hep-th/0003136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB687%2C161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB687%2C161
http://arxiv.org/abs/hep-th/0312155
http://jhep.sissa.it/stdsearch?paper=07%282004%29077
http://arxiv.org/abs/hep-th/0406053
http://jhep.sissa.it/stdsearch?paper=05%282005%29033
http://arxiv.org/abs/hep-th/0502086
http://jhep.sissa.it/stdsearch?paper=06%282003%29015
http://arxiv.org/abs/hep-th/0212111


J
H
E
P
0
6
(
2
0
0
7
)
0
3
6

[32] L.A. Pando Zayas and J. Sonnenschein, On Penrose limits and gauge theories, JHEP 05

(2002) 010 [hep-th/0202186].

[33] J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09

(1999) 025 [hep-th/9908134].

[34] G. Papadopoulos, J.G. Russo and A.A. Tseytlin, Solvable model of strings in a time

dependent plane wave background, Class. and Quant. Grav. 20 (2003) 969 [hep-th/0211289];

M. Blau and M. O’Loughlin, Homogeneous plane waves, Nucl. Phys. B 654 (2003) 135.

[35] R. de Mello Koch, J. Murugan, J. Smolic and M. Smolic, Deformed pp-waves from the

Lunin-Maldacena background, JHEP 08 (2005) 072 [hep-th/0505227].

[36] T. Mateos, Marginal deformation of N = 4 SYM and Penrose limits with continuum

spectrum, JHEP 08 (2005) 026 [hep-th/0505243].

[37] A. Hamilton and J. Murugan, A study of giant graviton operators in the Leigh-Strassler

deformation of N = 4 SYM, in progress.

[38] W. Fulton and J. Harris, Representation theory, Springer Verlag (1991).

[39] M. Pirrone, Giants on deformed backgrounds, JHEP 12 (2006) 064 [hep-th/0609173].

[40] R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitons - with strings attached (I),

hep-th/0701066;

R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitons - with strings attached. II,

hep-th/0701067.

[41] E. Imeroni and A. Naqvi, Giants and loops in beta-deformed theories, JHEP 03 (2007) 034

[hep-th/0612032].

– 32 –

http://jhep.sissa.it/stdsearch?paper=05%282002%29010
http://jhep.sissa.it/stdsearch?paper=05%282002%29010
http://arxiv.org/abs/hep-th/0202186
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://arxiv.org/abs/hep-th/9908134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C969
http://arxiv.org/abs/hep-th/0211289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB654%2C135
http://jhep.sissa.it/stdsearch?paper=08%282005%29072
http://arxiv.org/abs/hep-th/0505227
http://jhep.sissa.it/stdsearch?paper=08%282005%29026
http://arxiv.org/abs/hep-th/0505243
http://jhep.sissa.it/stdsearch?paper=12%282006%29064
http://arxiv.org/abs/hep-th/0609173
http://arxiv.org/abs/hep-th/0701066
http://arxiv.org/abs/hep-th/0701067
http://jhep.sissa.it/stdsearch?paper=03%282007%29034
http://arxiv.org/abs/hep-th/0612032

